Denison Hydraulic Motors
M5* Vane Motor Technology
Pressures up to 320 bar
GENERAL

Warning .. 2
General characteristics .. 3
Description ... 4
Ports and hydraulic fluids ... 5
Motor selection ... 6
Fluid power formulas .. 6
Performance data ... 7
Max. ratings ... 8 - 9

M5AF / M5AF1
Ordering code and technical data .. 10
Dimensions ... 11

M5B / M5BS
Ordering code and technical data .. 12
Dimensions ... 13

M5BF / M5BF1
Ordering code and technical data .. 14
Dimensions ... 15

WARNING — USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Offer of Sale

Please contact your Parker representation for a detailed "Offer of Sale".
Catalogue HY29-0018/UK

Vane Motors

M5A* / M5B*

LOW NOISE MOTOR

12 vanes and a patented cartridge design allows a very low noise level, whatever the speed.

HIGH PERFORMANCE MOTOR

The M5 series have been designed especially for severe duty applications which require high pressure, high speed and low fluid lubricity.

Max. pressure (intermittent)

M5A* 006 to 018 ... : 300 bar
M5A* 023 - 025 .. : 280 bar
M5B* 012 to 036 .. : 320 bar
M5B* 045 .. : 280 bar

Max. speed (intermittent, low loaded cond.)

M5A* 006 to 018 .. : 4000 RPM
M5A* 023 - 025 .. : 3000 RPM
M5B* 012 - 018 .. : 6000 RPM
M5B* 023 - 028 - 036 ... : 4000 RPM
M5B* 045 .. : 3000 RPM

HIGH EFFICIENCY

Up to 90 % overall at 300 bar for M5A* and 320 bar for M5B*.

Vane motors begin life with a high volumetric efficiency, and maintain that efficiency throughout their operating life.

Vane pin holdout design improves the mechanical efficiency at low pressure.

HIGH STARTING TORQUE

The high starting torque efficiency of the vane type motors allows them to start under high load without pressure overshoots, jerks and high instantaneous horsepower loads.

LOW TORQUE RIPPLE

This 12 vane type motor exhibits a very low torque ripple (typical ± 1.5%), even at low speeds.

HIGH LIFETIME

The vane, rotor and cam ring are pressure balanced to increase life over the full speed range. Double lip vanes reduce the sensitivity to fluid pollution.

INTERCHANGEABLE ROTATING GROUPS

Our precise manufacturing allows any component to be interchangeable. Rotating groups may be easily replaced to renew the motor or change the displacement to suit altered requirements for speed or torque.

ROTATION AND DRAIN

The M5B-M5BS are bi-directional motors, externally drained.

The M5AF and M5BF, externally drained, are available in three types of rotation: bi-directional, clockwise, counter-clockwise.

The M5AF1 and M5BF1, internally drained, are available in two types of rotation: clockwise, and counter-clockwise.

CROSS PORT CHECK VALVE

The uni-directional M5AF, M5AF1, M5BF and M5BF1 are designed with an internal valve that allows smooth dynamic braking, with a very simple hydraulic circuit and without risk of motor cavitation.

MOUNTING

M5B - M5BS : Cylindrical keyed or splined shaft according to SAE J744, ISO 3019-2 or J498.

These products are designed primarily for coaxial drives which do not impose axial or side loading on the shaft.

M5AF - M5AF1 : Cylindrical keyed or taper shaft, and a high load capacity double ball bearing allows the direct mounting on shaft (fan,...).

M5BF - M5BF1 : A stiff taper or cylindrical keyed shaft and a high load capacity double ball bearing allow the direct mounting on shaft (fan,...).
The motor shaft is driven by the rotor. Vanes, closely fitted into the rotor slots move radially to seal against the cam ring. The ring has two major and two minor radial sections joined by transitional sections called ramps. These contours and the pressures exposed to them are balanced diametrically.

Hydraulic pins and light springs urge the vanes radially against the cam contour assuring a seal at zero speed so that the motor can develop starting torque. The springs and pins are assisted by centrifugal force at higher speeds. Radial grooves and holes through the vanes equalize radial hydraulic forces on the vanes at all times. Fluid enters and leaves the motor cartridge through openings in the side plates at the ramps. Each motor port connects to two diametrically opposed ramps. Pressurized fluid entering at Port A torques the rotor clockwise. The rotor transports it to the ramp openings which connect to Port B from which it returns to the low pressure side of the system. Pressure at Port B torques the rotor counter-clockwise.

The rotor is separated axially from the sideplate surface by the fluid film. The front sideplate is clamped against the cam ring by the pressure, maintains optimum clearance as dimensions change with temperature and pressure. A 3-way shuttle valve in the sideplate causes clamping pressure in Port A or B, whichever is the highest.

Materials are chosen for long life efficiency. The vanes, rotor and cam ring are made out of hardened high alloy steels. Cast semi-steel sideplates are chemically etched to have a fine crystalline surface for good lubrication at start-up.
EXTERNAL DRAIN MOTOR
This motor may be alternately pressurized on ports A and B to 300 bar max. int. (280 bar for 025) for M5AF and 320 bar max. int. (280 bar for 045) for M5BF. Whichever port is at low pressure, it should not be subjected to more than 60% of the high pressure, e.g. for M5B*: When 320 bar in A, B is limited to 200 bar. This motor must have a drain line connected to the center housing drain connection of sufficient size to prevent back pressure in excess of 3,5 bar, and returned to the reservoir below the surface of the oil as far away as possible from the suction pipe of the pump.

INTERNAL DRAIN MOTOR
This unidirectional motor may be pressurized only on the port corresponding to its rotation type. The outlet pressure must not be higher than 3,5 bar.

RECOMMENDED FLUIDS
Petroleum base anti-wear R & O fluids (covered by Parker HF-0 and HF-2 specifications).
Maximum catalog ratings and performance data are based on operation with these fluids.

FIRE RESISTANT FLUIDS
They are easily used in the M5A* and M5B* motors. These include phosphate or organic ester fluids and blends, water-glycol solutions and water-oil invert emulsions.

ACCEPTABLE ALTERNATE FLUIDS
The use of fluids other than petroleum base anti-wear R & O fluids requires that the maximum ratings of the motor will be reduced. In some cases, the minimum replenishment pressure must be increased.

HF-1 : non antiwear petroleum base.
HF-3 : water in oil invert emulsion.
HF-4 : water glycols solutions.
HF-5 : synthetic fluids.

<table>
<thead>
<tr>
<th>Model of motor</th>
<th>Maximum speed</th>
<th>Maximum pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RPM</td>
<td>HF-1, HF-4, HF-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int.</td>
</tr>
<tr>
<td>M5A*</td>
<td>1500</td>
<td>225</td>
</tr>
<tr>
<td>M5B*</td>
<td>1800</td>
<td>240</td>
</tr>
</tbody>
</table>

VISCOSITY
Max. (cold start, low speed and pressure) 860 mm²/s (cSt)
Max. (full speed and pressure) 100 mm²/s (cSt)
Optimum (max. lifetime) 30 mm²/s (cSt)
Min. (full speed and pressure, HF-1 fluid) 18 mm²/s (cSt)
Min. (full speed and pressure, HF-0 & HF-2 fluids) 10 mm²/s (cSt)
For cold starts, the motor should operate at low speed and pressure until fluid warms up to an acceptable viscosity for full power operation.

VISCOSITY INDEX
90 min.
Higher values extend the range of operating temperatures and lifetime.

TEMPERATURE
Max. fluid temperature (HF-0, HF-1 & HF-2) + 100° C
Min. fluid temperature (HF-0, HF-1 & HF-2) - 18° C

FLUID CLEANLINESS
The fluid must be cleaned before and during operation to maintain a contamination level of NAS 1638 class 8 (or ISO 19/17/14) or better. Filters with 25 micron (or better, ß10 > 100) nominal ratings may be adequate but do not guarantee the required cleanliness levels.

WATER CONTAMINATION IN FLUID
Maximum acceptable content of water is:
• 0.10 % for mineral base fluids.
• 0.05 % for synthetic fluids, crankcase oils, biodegradable fluids.
If amount of water is higher, then it should be drained off the circuit.
Motor selection

Vane Motors

M5A*/ M5B

Check if available power is greater than required power (0.85 estimated overall efficiency).

\[
0.85 \times \frac{9 \times p \times n}{600} > \frac{T \times \pi \times n}{30 \times 1000}
\]

\[
0.85 \times \frac{55 \times 280}{600} > \frac{110 \times \pi \times 1500}{30 \times 1000}
\]

Two ways of calculation: Calculate \(V_i \) from \(T \) required torque, or from \(q_{ve} \) available flow.

2a.

\[
V_i = \frac{20 \times \pi \times T}{p} = \frac{20 \times \pi \times 110}{280} = 24.7 \text{ ml/rev.}
\]

3a. Choose motor from \(V_i \) immediately greater

M5B* 028 : \(V_i = 28.0 \text{ ml/rev.} \)

4a. Check theoretical motor pressure

\[
p = \frac{20 \times \pi \times (T + T_l)}{V_i} = \frac{20 \times \pi \times 119.5}{28.0} = 268 \text{ bar}
\]

Torque loss at this pressure = 9.5 Nm
(See page 12)
Calculate real pressure

\[
p = \frac{20 \times \pi \times 110}{36.0} = 192 \text{ bar}
\]

5a. Flow loss at this pressure : 5 l/min
(See page 12)
Real flow used by the motor :

55 - 5 = 50 l/min

6a. Real speed of the motor :

\[
n = \frac{50 \times 1000}{28.0} = 1785 \text{ RPM}
\]

Real performances

\(V_i = 28.0 \text{ ml/rev.} \)
\(n = 1785 \text{ RPM} \)
\(T = 110 \text{ Nm.} \)
\(p = 268 \text{ bar} \)

2b.

\[
V_i = \frac{1000 \times q_{ve}}{n} = \frac{1000 \times 55}{1300} = 36.7 \text{ ml/rev.}
\]

3b. Choose motor from \(V_i \) immediately smaller

M5B* 036 : \(V_i = 36.0 \text{ ml/rev.} \)

4b. Check theoretical motor pressure with

\[
p = \frac{20 \times \pi \times 118}{36.0} = 206 \text{ bar}
\]

Torque loss at this pressure = 8.0 Nm
(See page 12)
Calculate real pressure

\[
p = \frac{20 \times \pi \times (T + T_l)}{V_i} = \frac{20 \times \pi \times 119.5}{36.0} = 268 \text{ bar}
\]

5b. Flow loss at this pressure : 4 l/min
(See page 12)
Real flow used by the motor :

55 - 4 = 51 l/min

6b. Real speed of the motor :

\[
n = \frac{51 \times 1000}{36.0} = 1416 \text{ RPM}
\]

Real performances

\(V_i = 36.0 \text{ ml/rev.} \)
\(n = 1416 \text{ RPM} \)
\(T = 110 \text{ Nm.} \)
\(p = 206 \text{ bar} \)

FLUID POWER FORMULAS

Volumetric efficiency

\[
\eta_v = \frac{1}{\text{total leakage} \times 1000 \text{ speed x displacement}}
\]

Mechanical efficiency

\[
\eta_m = 1 - \frac{\text{torque loss} \times 20 \times \pi}{\Delta \text{pressure} \times \text{displacement}}
\]

Fluid motor speed

\[
\text{rpm} = \frac{1000 \times \text{flow rate} \times \text{volumetric eff.}}{\text{displacement}}
\]

Fluid motor torque

\[
\text{Nm} = \frac{\Delta \text{pressure} \times \text{displacement} \times \text{mech. eff.}}{20 \times \pi}
\]

Fluid motor power

\[
\text{kW} = \frac{\text{torque} \times \text{speed} \times \Delta \text{pressure} \times \text{overall eff.}}{600 \times 1000}
\]
Performance data

M5A* / M5B*

<table>
<thead>
<tr>
<th>Mounting flange</th>
<th>Ports</th>
<th>Drain</th>
<th>Shaft ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5AF</td>
<td>SAE 3/4" - 4 bolts UNC or SAE 3/4" - 4 bolts metric (ISO/DIS 6162 - SAE J518) or SAE 12 1"/16 - 12 UNF-2B J1926 or ISO 6149 - M22 x 1.5</td>
<td>ISO 6149 - M12 x 1.5 or SAE 6 - J1926 - SAE 9/16"</td>
<td>Keyed taper non SAE Keyed non SAE</td>
</tr>
<tr>
<td>M5AF1</td>
<td>Special mounting (2 bolts - Ø 120)</td>
<td>No drain connection</td>
<td></td>
</tr>
<tr>
<td>M5B</td>
<td>ISO 3019-2 100 A2/B4 HW (2/4 bolts - Ø 100)</td>
<td>SAE 3/4" - 4 bolts UNC or SAE 3/4" - 4 bolts metric (ISO/DIS 6162 SAE J518)</td>
<td>M18 x 1.5</td>
</tr>
<tr>
<td>M5BS</td>
<td>SAE “B” J744 (2/4 bolts - Ø 101,6)</td>
<td>SAE 3/4" - 4 bolts UNC or SAE 3/4" - 4 bolts metric (ISO/DIS 6162 SAE J518)</td>
<td>M18 x 1.5</td>
</tr>
<tr>
<td>M5BF</td>
<td>Special mounting (2 bolts - Ø 135)</td>
<td>SAE 3/4" - 4 bolts metric (ISO/DIS 6162 SAE J518)</td>
<td>SAE 9/16"</td>
</tr>
<tr>
<td>M5BF1</td>
<td>No drain connection</td>
<td></td>
<td>Keyed taper non SAE Keyed cyl. SAE “C” Keyed cyl. ISO G32N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Series</th>
<th>Theoretical displacement</th>
<th>Theoretical torque</th>
<th>Theoretical power at 100 RPM</th>
<th>Typical data 2000 RPM - 300 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ml/rev</td>
<td>N.m/bar</td>
<td>kW/bar</td>
<td>N.m</td>
</tr>
<tr>
<td>M5A*</td>
<td>6.3</td>
<td>0.100</td>
<td>0.0011</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>0.159</td>
<td>0.0017</td>
<td>43.7</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>0.199</td>
<td>0.0021</td>
<td>55.7</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>0.255</td>
<td>0.0027</td>
<td>72.4</td>
</tr>
<tr>
<td></td>
<td>18.0</td>
<td>0.286</td>
<td>0.0030</td>
<td>81.2</td>
</tr>
<tr>
<td></td>
<td>23.0</td>
<td>0.366</td>
<td>0.0038</td>
<td>102,5<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>25.0</td>
<td>0.398</td>
<td>0.0042</td>
<td>107,4<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>023 - 025 = 280 bar max.</td>
</tr>
<tr>
<td>M5B*</td>
<td>12.0</td>
<td>0.191</td>
<td>0.0020</td>
<td>50.6</td>
</tr>
<tr>
<td></td>
<td>18.0</td>
<td>0.286</td>
<td>0.0030</td>
<td>81.2</td>
</tr>
<tr>
<td></td>
<td>23.0</td>
<td>0.366</td>
<td>0.0038</td>
<td>117.1</td>
</tr>
<tr>
<td></td>
<td>28.0</td>
<td>0.446</td>
<td>0.0047</td>
<td>132.1</td>
</tr>
<tr>
<td></td>
<td>36.0</td>
<td>0.572</td>
<td>0.0060</td>
<td>172.8</td>
</tr>
<tr>
<td></td>
<td>45.0</td>
<td>0.716</td>
<td>0.0075</td>
<td>190.0<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>045 = 280 bar max.</td>
</tr>
</tbody>
</table>

STARTING PERFORMANCES

- Typical data at 24 cSt / 45° C
- M5A* M5B* Maximum cross-flow 100 bar : 0.6 l/min, 1.8 l/min
 200 bar : 7.4 l/min, 7.8 l/min
 320 bar : 10.7 l/min¹, 12.5 l/min
 ¹ 300 bar
- Minimum stalled torque efficiency for M5B* only 100 bar : 78.3 %
 200 bar : 81.0 %
 320 bar : 80.8 %

PERMISSIBLE AXIAL AND RADIAL LOADS M5BF

1 - Max. axial load : Fa max. = 6 000 N
2 - Max. radial load cylindrical shaft : Fr max. = 5 000 N
3 - Theoretical lifetime [hour] : \(L_{10H} \) [hour] = \(\frac{16 666}{N \text{ [rpm]}} \) x \(L_{10} \)
4 - Theoretical lifetime [10⁶ rev] : \(L_{10} \)
5 - Eg of theoretical life time calculation

Axial load Fa = 2000 N
Radial load Fr = 1000 N
Operating speed N = 2000 RPM
L10 = 2000 [10⁶ rev] (see on curve page 14).

\[L_{10H} = \frac{16 666}{2000} \times 2000 \quad L_{10H} = 16 666 \text{ hours.} \]
- These are running condition limits; for starting performances see page 7.
- Intermittent conditions: do not exceed 6 seconds per minute of rotation.
- Typical curves, at 24 cSt 45°C.
- For higher specifications or for operating speed under 100 RPM, please consult our technical department.
Max ratings M5B*

- These are running condition limits; for starting performances see page 7.
- Intermittent conditions: do not exceed 6 seconds per minute of rotation.
- Typical curves, at 24 cSt 45°C.
- For higher specifications or for operating speed under 100 RPM, please consult our technical department.

012 - 018

023 - 028 - 036

045
Model No.
M5AF series External drain
M5AF1 series Internal drain

Displacement
Volumetric displacement (ml/rev.)
006 = 6.3
010 = 10.0
012 = 12.5
016 = 16.0

Type of shaft
1 = taper (non SAE)
2 = keyed (non SAE)

Direction of rotation (view on shaft end) - M5AF - M5AF1
R = Clockwise
L = Counter-clockwise
Direction of rotation (view on shaft end) - M5AF
N = Bi-rotational

Porting combination

View from shaft end:
CW rotation
A = inlet
B = outlet
CCW rotation
A = outlet
B = inlet

Overall leakage (internal + external)

TORQUE LOSS

PERMISSIBLE AXIAL AND RADIAL LOADS

L10 = Theoretical lifetime \[10^6\] rev.

1) L or R rotation is a new internal concept : A is always «in» and B always «out».
2) Anti-starve valve not available.
PERFORMANCES: PRESSURE & SPEED

<table>
<thead>
<tr>
<th>Displacement</th>
<th>006</th>
<th>010</th>
<th>012</th>
<th>016</th>
<th>018</th>
<th>023</th>
<th>025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure max (bar)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>Speed max (RPM)</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>2500</td>
<td>2500</td>
</tr>
</tbody>
</table>

MINIMUM REPLENISHMENT PRESSURE (BAR ABSOLUTE AT THE B PORT) for M5AF with an internal check valve

<table>
<thead>
<tr>
<th>Flow (l/min)</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min pressure (bar)</td>
<td>1.3</td>
<td>1.8</td>
<td>2.0</td>
<td>2.5</td>
<td>2.0</td>
<td>3.0</td>
<td>4.2</td>
</tr>
</tbody>
</table>

1) 60 l/min is the maximum flow allowed through the internal check valve.
2) This torque is for a steel coupling and a nut of at least grade 8.8 quality. It is compulsory to install a castle nut and cotter pin for right-hand rotation - bi-rotational.
Catalogue HY29-0018/UK
Vane Motors
M5A* / M5B*

Model No.
M5B series External drain
ISO 3019-2 - 100 A2/B4 HW
M5BS series External drain
SAE B - J744

Displacement
Volumetric displacement (ml/rev.)
012 = 12.0
018 = 18.0
023 = 23.0
028 = 28.0
036 = 36.0
045 = 45.0

Type of shaft
1 = keyed (SAE B)
2 = keyed (ISO E25M)
3 = splined (SAE B)
4 = splined (SAE BB)

Direction of rotation (view on shaft end)
N = Bi-rotational

Modifications
Drain variables - M5BS
2 = 9/16” 18 SAE drain
3 = M18 x 1.5 metric drain
Drain variables - M5B
3 = M18 x 1.5 metric drain

End cap variables
M = 3/4.” - 4 bolts SAE flange J518 - Metric thread
0 = 3/4.” - 4 bolts SAE flange J518 - UNC thread

Seal class
1 = S1 - BUNA N
5 = S5 - VITON®

Design letter

Porting combination

ROTAION = BI-ROTATIONAL (N)

View from shaft end :
CW rotation
A = inlet
B = outlet
CCW rotation
A = outlet
B = inlet

OVERALL LEAKAGE (internal + external)

NOISE LEVEL - M5BS - 036

PERMISSIBLE AXIAL AND RADIAL LOADS

Do not apply Fr and Fa loads simultaneously.
Model No.

M5BF series External drain
M5BF1 series Internal drain

Displacement

Volumetric displacement (ml/rev.)
012 = 12.0
018 = 18.0
023 = 23.0
028 = 28.0
036 = 36.0
045 = 45.0

Type of shaft

1 = keyed taper (non SAE)
2 = keyed (SAE C)
W = keyed (ISO G32N)

Direction of rotation (view on shaft end) - M5BF - M5BF1
R = Clockwise
L = Counter-clockwise
N = Bi-rotational

Porting combination

Drain variables - M5BF

2 = 9/16” 18 SAE drain
3 = M18 x 1.5 metric drain
x = no drain connection

End cap variables M5BF

M = 3/4.” - 4. bolts SAE flange J518 - Metric thread
0 = 3/4.” - 4. bolts SAE flange J518 - UNC thread

Seal class

1 = S1 - BUNA N
5 = S5 - VITON®

Design letter

R or L Rotation (New rotation concept - patent pending)

View from shaft end:

CW rotation: A = inlet
B = outlet
CCW rotation: A = outlet
B = inlet

Overall leakage (internal + external)

Torque loss

Permissible axial and radial loads
Anti-starve valve option

DRAIN PORT ØB 13,5 DEEP MAX
SPOT FACE Ø 29 DEEP 2 MAX

SHADOW CODE 1
SAE "BB" - J 744
WITH M10 - 20 DEEP
TAPER 125:1000

SHAFT CODE W
SAE 9/16" - 18
M18 x 1.5
No drain connection

MOUNTING TORQUE 100 N.m

OPTION PROPORTIONAL
PRESSURE RELIEF VALVE

Torque of the nut : 80 Nm

1) This torque is for a steel coupling and a nut of at least grade 8.8 quality.
 It is compulsory to install a castle nut and cotter pin for right-hand rotation - bi-rotational.
Parker Worldwide

AE – UAE, Dubai
Tel: +971 4 8127100
parker.me@parker.com

AR – Argentina, Buenos Aires
Tel: +54 3327 44 4129
parker.args@parker.com

AT – Austria, Wiener Neustadt
Tel: +43 (0)2622 23501-0
parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt
Tel: +43 (0)2622 23501 900
parker.eastern@parker.com

AU – Australia, Castle Hill
Tel: +61 (0)2-9634 7777
parker.aus@parker.com

AZ – Azerbaijan, Baku
Tel: +994 50 2233 458
parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles
Tel: +32 (0)67 280 900
parker.belgium@parker.com

BR – Brazil, Cachoeirinha RS
Tel: +55 51 3470 9144
parker.brasil@parker.com

BY – Belarus, Minsk
Tel: +375 17 209 9399
parker.belarus@parker.com

CA – Canada, Milton, Ontario
Tel: +1 905 693 3000
parker.ca@parker.com

CH – Switzerland, Etoy
Tel: +41 (0)4 50 25 80 25
parker.ch@parker.com

CL – Chile, Santiago
Tel: +56 2 623 1216
parker.cl@parker.com

CN – China, Shanghai
Tel: +86 21 2899 5000
parker.cn@parker.com

CZ – Czech Republic, Klicany
Tel: +420 284 083 111
parker.czech@parker.com

DE – Germany, Karsten
Tel: +49 (0)2131 4016 0
parker.de@parker.com

DK – Denmark, Ballerup
Tel: +45 43 56 04 00
parker.denmark@parker.com

ES – Spain, Madrid
Tel: +34 902 33 00 01
parker.spain@parker.com

FI – Finland, Vantaa
Tel: +358 (0)20 753 2500
parker.finland@parker.com

FR – France, Contamine s’Arve
Tel: +33 (0) 40 52 50 80 25
parker.france@parker.com

GR – Greece, Athens
Tel: +30 210 933 6450
parker.greece@parker.com

HK – Hong Kong
Tel: +852 2428 8008
parker.hk@parker.com

HU – Hungary, Budapest
Tel: +36 1 220 4155
parker.hu@parker.com

IE – Ireland, Dublin
Tel: +353 (0) 1 666 6370
parker.ie@parker.com

IN – India, Mumbai
Tel: +91 22 6513 7081-85
parker.india@parker.com

IT – Italy, Corsico (MI)
Tel: +39 02 45 19 21
parker.it@parker.com

JP – Japan, Fujisawa
Tel: +(81) 4 6635 3050
parker.japan@parker.com

KR – South Korea, Seoul
Tel: +82 2 559 0400
parker.korea@parker.com

KZ – Kazakhstan, Almaty
Tel: +7 7272 505 900
parker.kazakhstan@parker.com

LV – Latvia, Riga
Tel: +371 6 745 2601
parker.latvia@parker.com

MX – Mexico, Apodaca
Tel: +52 81 8156 6000
parker.mexico@parker.com

MY – Malaysia, Shah Alam
Tel: +60 3 7849 0800
parker.my@parker.com

NL – The Netherlands, Oldenzaal
Tel: +31 (0)541 585 000
parker.nl@parker.com

NO – Norway, Ski
Tel: +47 64 91 10 00
parker.norway@parker.com

NZ – New Zealand, Mt Wellington
Tel: +64 9 574 1744
parker.nz@parker.com

PL – Poland, Warsaw
Tel: +48 (0)22 573 24 00
parker.poland@parker.com

PT – Portugal, Loca da Palmeira
Tel: +351 22 999 7360
parker.portugal@parker.com

RO – Romania, Bucharest
Tel: +40 21 252 1382
parker.ro@parker.com

RU – Russia, Moscow
Tel: +7 495 645-2156
parker.ru@parker.com

SE – Sweden, Spånga
Tel: +46 (0) 8 59 79 50 00
parker.se@parker.com

SG – Singapore
Tel: +65 6887 6300
parker.sg@parker.com

SK – Slovakia, Banská Bystrica
Tel: +421 484 162 252
parker.sk@parker.com

SL – Slovenia, Nova Mesto
Tel: +386 7 337 6650
parker.slovenia@parker.com

TH – Thailand, Bangkok
Tel: +66 2 717 8140
parker.thailand@parker.com

TW – Taiwan, Taipei
Tel: +886 2 2298 8987
parker.tw@parker.com

UA – Ukraine, Kiev
Tel +380 44 494 2731
parker.ua@parker.com

UK – United Kingdom, Warwick
Tel: +44 (0)1926 317 878
parker.uk@parker.com

US – USA, Cleveland (industrial)
Tel: +1 216 896 3000
parker.usa@parker.com

US – USA, Lincolnshire (mobile)
Tel: +1 847 821 1500
parker.mobil@parker.com

VE – Venezuela, Caracas
Tel: +58 212 238 5422
parker.ven@parker.com

ZA – South Africa, Kempton Park
Tel: +27 (0)11 961 0700
parker.southafrica@parker.com

European Product Information Centre
Free phone: 00 800 27 27 5374
(from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, UK, ZA)

© XXXX to 2009 Parker Hannifin Corporation. All rights reserved.